Unit 1 Part 2: Lesson 2 Estimating Roots

Estimate $\sqrt[3]{\mathbf{9 8 9}}$ to the nearest integer.
The largest perfect cube less than 989 is 729 .
The smallest perfect cube greater than 989 is 1,000 .

$$
\begin{aligned}
& \sqrt[3]{729}=9 \\
& \sqrt[3]{1000}=10
\end{aligned}
$$

729	<989		
$9^{3}<989$	$<1,000 \quad$		Write an inequality.
:---			
$729=9^{3}$ and $1,000=10^{3}$			

$\sqrt[3]{9^{3}}<\sqrt[3]{989}<\sqrt[3]{10^{3}} \quad$ Find the cube root of each number.
$9<\sqrt[3]{989}<10 \quad$ Simplify.
So, $\sqrt[3]{989}$ is between 9 and 10 . Since 989 is closer to 1,000 than 729 , the best integer estimate for $\sqrt[3]{989}$ is 10 .

STEM The formula $t=\frac{\sqrt{h}}{4}$ represents the time t in seconds that it takes an object
to fall from a height of \boldsymbol{h} feet. If a rock falls from a height of $\mathbf{1 2 5}$ feet, estimate how long it will take to reach the ground.

$$
t=\frac{\sqrt{h}}{4}
$$

Write the equation.
$=\frac{\sqrt{125}}{4} \quad$ Replace h with 125.
$\approx \frac{11}{4}$ or 2.75 Estimate the square root to the nearest integer. Simplify.

So, it will take about 2.75 seconds for the rock to reach the ground.

