\qquad
\qquad
\qquad

Lesson 3 Reteach

Properties of Operations

Example 1

Name the property shown by the statement $u+v=\boldsymbol{v}+\boldsymbol{u}$.
The order in which the variables are being added changed. This is the Commutative Property of Addition.

Example 2

State whether the following conjecture is true or false. If false, provide a counterexample.

Subtraction of integers is commutative.
Write two subtraction expressions using the Commutative Property.

$$
\begin{aligned}
17-9 & \stackrel{?}{=} 9-17 & & \text { State the conjecture. } \\
8 & \neq-8 & & \text { Subtract. }
\end{aligned}
$$

We found a counterexample. That is, $17-9 \neq 9-17$. So, subtraction is not commutative. The conjecture is false.

Example 3

Simplify the expression. Justify each step.
$9+(3 x+4)$

$$
\begin{aligned}
9+(3 x+4) & =9+(4+3 x) & & \text { Commutative Property of Addition } \\
& =(9+4)+3 x & & \text { Associative Property of Addition } \\
& =13+3 x & & \text { Simplify. }
\end{aligned}
$$

Exercises

Name the property shown by each statement.

1. $7 \cdot 1=7$
Multiplicative Identity
2. $4+(3 y+2)=(4+3 y)+2$
Associative Property of Addition

State whether the following conjectures are true or false. If false, provide a counterexample.
3. The product of two even numbers is odd. false; $\mathbf{4 \bullet 6}=\mathbf{2 4}$
4. The difference of two odd numbers is even. true
5. Simplify $4+(5 x+2)$. Justify each step.

$$
\begin{aligned}
4+(5 x+2) & =4+(2+5 x) & & \text { Commutative Property of Addition } \\
& =(4+2)+5 x & & \text { Associative Property of Addition } \\
& =6+5 x & & \text { Simplify }
\end{aligned}
$$

