Lesson 7 Reteach

Solve One-Step Inequalities

Addition and Subtraction Properties		
Words	When you add or subtract the same number from each side of an inequality, the inequality remains true.	
Symbols	For all numbers a , b , and c , 1. if $a < b$, then $a + c < b + c$ and $a - c < b - c$. 2. if $a > b$, then $a + c > b + c$ and $a - c > b - c$.	

Example 1

Solve $x + 9 \le 12$. Graph the solution on a number line.

$$x + 9 \le 12$$
 Write the inequality.

$$-9$$
 -9 Subtract 9 from each side.

$$x \leq 3$$
 Simplify.

The solution is $x \le 3$. To graph it, draw a closed dot at 3 and draw an arrow to the left on the number line.

Multiplication and Division Properties		
Words	When you multiply or divide each side of an inequality by the same <i>positive</i> number, the inequality remains true.	
Symbols	For all numbers a , b , and c , where $c > 0$, 1. if $a < b$, then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$. 2. if $a > b$, then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$.	

Example 2

Solve 3x > 15. Graph the solution on a number line.

$$3x > 15$$
 Write the inequality.

$$\frac{3x}{3} > \frac{15}{3}$$
 Divide each side by 3.

$$x > 5$$
 Simplify.

The solution is x > 5. To graph it, draw an open dot at 5 and draw an arrow to the right on the number line.

Exercises

Solve each inequality. Then graph the solution on a number line.

1.
$$9d > 81$$
 d > 9

2.
$$t - 5 < 4$$
 t < 9

3.
$$j + 6 \ge 11$$
 $j \ge 5$

4.
$$\frac{n}{3} \le 7$$
 $n \le 21$

