Chapter 1 Real Numbers

Lesson 1-4 Powers of Monomials
Page 35
1 A shipping box is in the shape of a cube. Each side measures $3 c^{6} d^{2}$ inches. Express the volume of the cube as a monomial.

The formula for the volume of a cube is $V=s^{3}$, where x is the length of each side.

$$
\begin{aligned}
\left(3 c^{6} d^{2}\right)^{3} & =3^{3}\left(c^{6}\right)^{3}\left(d^{2}\right)^{3} & & \text { Power of a product. } \\
& =3^{3} \cdot c^{6 \cdot 3} \cdot d^{2 \cdot 3} & & \text { Power of a power } \\
& =27 c^{18} d^{6} & & \text { Simplify. }
\end{aligned}
$$

The volume of the box is $27 c^{18} d^{6}$ cubic units.

11 Simplify $\left(-2 v^{7}\right)^{3}\left(-4 v^{2}\right)^{4}$. Show your work.

$$
\begin{aligned}
\left(-2 v^{7}\right)^{3}\left(-4 v^{2}\right)^{4} & =(-2)^{3}\left(v^{7}\right)^{3}(-4)^{4}\left(v^{2}\right)^{4} & & \text { Power of a product. } \\
& =-8 \cdot v^{(7 \cdot 3)} \cdot 256 \cdot v^{(2 \cdot 4)} & & \text { Power of a power. } \\
& =-2,048 v^{(7 \cdot 3)+(2 \cdot 4)} & & \text { Commutative Property } \\
& =-2,048 v^{21+8} & & \text { Multiply. } \\
& =-2,048 v^{29} & & \text { Add. }
\end{aligned}
$$

